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Abstract

The super-critical secondary flow properties of natural convection in an inclined channel (NCIC) have been explored

numerically by virtue of Boussinesq type Navier–Stokes equations. The primary flow in the inclined channel heated

from below was assumed as fully developed so that the secondary flow in the cross-section can be studied as a B�eenard
type problem without regarding the primary speed profiles but allowing the buoyancy force depending on the channel

inclination. The ratios of channel spacing to width for the inclined channel have been considered to recognize the

sensitivity to the secondary flow patterns from the ratio, with the Rayleigh number changing from 104 to 106. For

moderate Rayleigh numbers ranging from 104 to 105, it was revealed that the numerically evaluated spatial wavelength

of the secondary flow appears a relatively good consistence with measured data, and the pattern of the secondary flow is

sensitive to the inclination angle.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Natural convection has become an ad hoc heat

transfer subject in recent two decades, as more and more

applications in solar energy, building services engineer-

ing and other industrial processes have been found.

Elenbaas [1] had considered the natural convection in

inclined channels earlier, while Bodoia and Osterle [2]

studied the development of natural convection in 1962.

A number of important investigations were carried out

when solar energy technology was highlighted during

1970s and 1980s. Among these, are the contributions

from Aung et al. [3–5], Sparrow et al. [6], and Wirtz and

Liu [7]. Not only have these works make sure of the

research depth of the subject, but has improved the

understanding of its phenomenon.
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Actually, to meet the technological demands in ap-

plications, the study of natural convection has been in-

tensified. For example, Zanchini [8] and Barletta [9,10]

have studied the mixed and natural convection in par-

allel walled channels by using the perturbation series

method. They found the fields of velocity and tempera-

ture, and the Nusselt numbers associated with the flow

characteristic parameter. Barletta and Zanchini [11]

have further studied the time periodic laminar mixed

convection in an inclined channel. They derived the os-

cillations of local velocity, pressure and heat flux, and

explored the impacts from the Prandtl number and the

angular frequency of the hot wall temperature on these

oscillations. This work is of great significance, since for

some super-critical cases the secondary flow for the

natural convection in the inclined channel can lead to

the overall Nusselt number oscillates with heating time.

In addition, there were a number of studies of natural

convection associated with particular boundary condi-

tions [12–19]; the transition to unsteady natural con-

vection [20–23], the onset of unsteadiness to chaos [23],

and 3D simulation for natural convection in rectangular

enclosures [24–27]. This indicates that the study of
ed.
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Nomenclature

g gravitational acceleration, m/s2

n unit vector normal to the boundary surface

p Pressure, Pa

Pr Prandtl number

Ra ¼ gbTðTw1 � Tw2ÞS3=mj, Rayleigh number

Nuav ¼� S
W

R W =S
0

oH
oy

���
y¼0

dx, overall Nusselt number

S spacing between the parallel walls

T temperature, K

u velocity vector

u� variable in accurate projection defined, m/s

u0 reference velocity, m/s

u velocity component in x-direction, m/s

v velocity component in y-direction, m/s

W width of the inclined parallel walled channel

x, y coordinates, m

t Time

Greek symbols

bT Coefficient of thermal expansion

v Pressure potential

Dt nondimensional time interval

DT Tw1 � Tw2, temperature difference, K

w stream function

q Density, kg/m3

s Tangent unit vector on boundary oX
r2 Laplacian operator

Superscripts

n time level

w Wall

T Thermal

θ

Tw1

Tw2

g

x

y
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Fig. 1. (a) Schematic diagram of the inclined rectangular

channel and (b) secondary flow domain.
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natural convection has advanced extensively and at a

higher professional level. For natural convection in in-

clined channels (NCIC), the earlier experiments in water

was carried out by Azevedo and Sparrow [28], corre-

sponding to the theoretical work of Lavine [29]. Azev-

edo and Sparrow used water with Prandtl number close

to 5.0 to conduct their experiments, and found that the

secondary flow in the cross-section appears in cellular

patterns, whose structures are closely related to the

Rayleigh number, the spatial wavelength of the sec-

ondary flow, or say cell size of the flow pattern. While

Lavine has found that for the case of uniform heat flux,

for any value of Rayleigh number corresponding to an

adverse temperature gradient, the convection flow is

unstable, and without any dependence on the base ve-

locity and temperature distribution and inclination.

We have previously studied the thermal-induced flow

instability in a horizontal parallel plate channel by using

a fractional algorithm in numerical experiments [30].

Further, we have used the accurate projection method

[31] to address the characteristics of natural convection

in a tall cavity [33] as well as the laminar natural con-

vection in an inclined parallel walled channel [34]. Now,

in order to reveal the properties of super-critical sec-

ondary flow of natural convection in an inclined chan-

nel, we investigated the natural convection problem by

using the Boussinesq type Navier–Stokes model with the

projection method [33].

Fig. 1 shows the schematic of the problem, in which

part (a) gives the inclined channel whose side walls are

insulated, while part (b) shows the cross-section of the

secondary flow occurs due to bottom heating. The sec-

ondary flow is numerically simulated by assuming that

the main flow in the channel direction is fully developed.

For the super-critical natural convection, the Rayleigh
number is larger than the critical value and nonlinear

effect becomes significant. Because the inclination has

affected the buoyancy force component subjecting on

the fluid, and the side wall has influence on the number

of cells in the cross-section. So far, these features have

not been studied in detail. It is necessary to carry out a

detailed numerical investigation for the recognization of

the secondary flow for NCIC.
2. Governing equations

There are many studies for the natural convection in

parallel walled channel. However, as mentioned before,

there were less works focused on the corresponding

secondary flows, which associated with the inclination

and side effects. For convenience, we assume that the

fluid is Newtonian type, and the wall temperature dif-

ference is small enough, so that the Boussinesq type

Navier–Stokes model is still suitable for simulating the
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super-critical secondary flows of NCIC. The problem

considered has the schematic given in Fig. 1. As theo-

retically revealed [35], if the inclination angle equals 90�,
the critical Rayleigh number of flow in the channel

cross-section is 1708. However, when the inclination is

small, e.g. less than 45�, the effects of inclination and the

influence from the sides are still unsolved issues.

It is assumed that the main stream in the inclined

channel is fully developed. The spacing and the width of

the channel are respectively labeled by S and W , with the

inclination denoted by h. To describe the secondary flow

of fluid having kinematic viscosity m and thermal diffu-

sivity j, we assume that the side walls are thermally

insulated, and the flow is driven by wall temperature

difference Tw1 � Tw2, with the subscripts ‘‘w1’’ and ‘‘w2’’

indicating the bottom and top walls. The projection of

the gravitational acceleration in the cross-section is

g sin h. Hence, the buoyancy force for driving the sec-

ondary flow has decreased by a factor sin h, which

vanishes as h is zero, corresponding to the vertical case.

To normalize the governing equations, we use the

coordinates given in Fig. 1(b). Following the way of

Wakitani [38], we select S and u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbTSDT

p
as the

units of length and velocity respectively, with time

measured by t0 ¼ S=u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr=Ra

p
S2=m. Hence, if we

choose qu20 as the measure of pressure, and define

H ¼ ðT � Tw2Þ=DT , the dimensionless governing equa-

tions have the Boussinesq type Navier–Stokes form:

oH
ot

þ oðuHÞ
ox

þ oðvHÞ
oy

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
RaPr

p r2H ð1Þ

ou
ox

þ ov
oy

¼ 0 ð2Þ

ou
ot

þ oðuuÞ
ox

þ oðuvÞ
oy

¼ � op
ox

þ
ffiffiffiffiffiffi
Pr
Ra

r
r2u ð3Þ

ov
ot

þ oðuvÞ
ox

þ oðvvÞ
oy

¼ � op
oy

þH sin hþ
ffiffiffiffiffiffi
Pr
Ra

r
r2v ð4Þ

where the inclination is denoted as h. They can be re-

written as vector forms:

Ht þ ðu � rÞH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðPrRaÞ

p
r2H ð5Þ

and

r � u ¼ 0 ð6Þ

ut þ ðu � rÞu ¼ �rp þHkþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pa=Ra

p
r2u ð7Þ

where kð¼ ð0; sin hÞÞ is the unit vector in the vertical

direction, and Pr is the Prandtl number accompanied

by the Rayleigh number denoted as Ra ¼ gbTðTw1 �
Tw2ÞS3=mj.

The solutions of the governing Eqs. (5)–(7) should be

sought under appropriate conditions which are com-

patible with the problem considered. As aforemen-
tioned, the boundary conditions on the two vertical

walls can be written as:

u ¼ 0; v ¼ 0; H ¼ 0 for y ¼ 1 ð8Þ

and

u ¼ 0; v ¼ 0; H ¼ 1 for y ¼ 0 ð9Þ

For the horizontal side walls, we have

u ¼ 0; v ¼ 0; oH=ox ¼ 0 for x ¼ 0 or W =S ð10Þ

On the other hand, the initial conditions are simply

assigned as

u ¼ 0; v ¼ 0; H ¼ 0 for t ¼ 0; x; y 2 X ð11Þ
3. Numerical method

As is well known, the governing equations are

available for laminar convections. There are many nu-

merical methods which have been confirmed to be suc-

cessful in performing physically true solution. Le Qu�eer�ee
and Roquefort [36] have developed a Chebyshev poly-

nomial algorithm, which has been used to analyse the

bifurcation of double-diffusive convection with opposing

horizontal thermal and solutal gradients [37] and in-

vestigate the fluid flow behaviors from onset of steadi-

ness to chaos in a differentially heated square cavity [23].

Wakitani [24] insisted on using the numerical algorithm

of Kawamura and Kawahara [39]. There is commonly

appreciated finite volume method as described by Pat-

ankar [40], and Papanicolaou and Jaluria [41], and finite

element method as those appreciated by Khanafer et al.

[14].

It is noted that Brown et al. [31] has reported the

accurate projection method for Navier–Stokes equa-

tions, and confirmed the availability of this method. We

have used this method by combining the approximate

factorization [32] for the solution of pressure potential

field to investigate the natural convection of air in a tall

cavity [33]. It was found by rigorously comparing with

published data that the projection method is useful in

searching the solutions of Boussinesq type Navier–

Stokes Equations. A brief description of the procedures

of the projection method is as follows:

(1) Introduce a relation between the intermediate veloc-

ity vector and the pressure potential first, and then

represent the real velocity vector by virtue of a pro-

jection operator;

(2) Evaluate the nonlinear convective terms in the gov-

erning equation with explicit discretization, and then

evaluate the increments of the normalized tempera-

ture and velocity components with Crank–Nicolson

scheme;
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(3) According to these increments, the intermediate ve-

locity vector can be evaluated, and then the Poisso-

nian equation for pressure potential can be solved

with approximate factorization method;

(4) Update the velocity vector in terms of the new gra-

dient of the pressure potential;

(5) Return to step 2 if numerical iterations need to con-

tinue; Otherwise stop and output the required data.

The intermediate velocity vector is given by

u� ¼ uþrv ð12Þ

where v is the pressure potential. The projection is

written as:

u ¼ Pðu�Þ ð13Þ

Thus, the pressure expression can be obtained:

p ¼ o

ot

�
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr=Ra

p
r2

�
v ð14Þ

After discretizing the governing equations, we obtain

Hnþ1 �Hn

Dt
¼ �½ðu � rHÞ�nþ

1
2

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðPrRaÞ

p
r2ðHnþ1 þHnÞ ð15Þ

u�nþ1 � un

Dt
¼ �½ðu � ruÞ�nþ

1
2 þ ½H�nþ

1
2

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr=Ra

p
r2ðu�nþ1 þ unÞ ð16Þ

unþ1 ¼ u�nþ1 �rvnþ1 ð17Þ

and

pnþ1 ¼ vnþ1 � vn

Dt
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr=Ra

p
r2ðvnþ1 þ vnÞ ð18Þ

where v satisfies the Poisson’s equation

r2v ¼ r � u� ð19Þ

whose boundary conditions are given by

n � u� ¼ n � ub; s � u� ¼ s � ðrvþ ubÞ for x; y 2 oX

ð20Þ

Thus

n � rv ¼ 0 for x; y 2 oX ð21Þ

where X is the secondary flow domain with its boundary

expressed as oX. As soon as the pressure potential is

evaluated, we can update the velocity by

unþ1 ¼ u�nþ1 � Dtrvnþ1 ð22Þ

The projection method was named as PmIII, which has

second order accuracy for pressure even at grids near the

boundaries.
4. Numerical analyses and discussion

4.1. Parameters used in the numerical experiments

Numerical experiments were carried out by using the

nearly uniform staggered grid system with grid number

241 · 49 for the normalized domain x 2 ð0;W =SÞ,
y 2 ð0; 1Þ of secondary flow of NCIC. The mesh size

close to a wall is assigned as half of that in the core

portion of the domain. For any case, the temporal in-

terval was set as 5· 10�3. The criteria for the iteration of

pressure potential with approximate factorization is 10�4

defined by the relative error, as given in Ref. [33], where

the issue of grid independence of the numerical method

is reported in detail. It shows that using the grid of

number 241· 49 is quite possible to achieve grid-inde-

pendent numerical results. The Prandtl number of fluid

is set as 5.0, which is the same as that of the fluid in

experiments of Azevedo and Sparrow [28].

4.2. Super-critical secondary flow properties

The secondary flows of NCIC, for the super-critical

Rayleigh number Ra ¼ 104, the inclination h ¼ 45 �C,
and the spacing to width ratio 0.1, are constituted by

totally regular cells, as shown in Fig. 2(a). There are

more cells than that appeared in the critical state, for

which the cell number should be about 10 [35], while

Fig. 2(a) has illustrated 13 cells. This implies that the

spatial wave length for this super-critical secondary flow

is 1.538 (¼ 10· 2/13). A pair of cells should have two

different rotating behaviors, one rolling along the main

stream direction, another cell takes the relevant reverse.

One can see the cellular rolling behavior with respect to

the isotherms shown in Fig. 2(b), which also indicates

that the secondary flow has notable symmetry for the

horizontal line y ¼ 0:5 in this case.

However, this symmetrical property cannot appear

for larger Rayleigh number cases. This can be seen from

Fig. 3. It is noted that when the Rayleigh number is

20 · 104, the distribution of local Nusselt number on the

bottom wall has lost its nearly regular periodic property.

Fig. 4 shows the evolution of the overall Nusselt

number on the bottom wall for S=W ¼ 0:1, h ¼ 45�
when Ra varies from 104 to 100 · 104. At first, it can be

seen that two regimes of natural convection appear. For

larger Ra, the averaged Nusselt number has temporal

oscillation. This means that the natural convection

model may be invalid if the possible transition to chaos

in the secondary flow is considered. Secondly, there is an

initial variation period during which the Nusselt number

decay gradually, and then it starts growing to a peak and

varying to a steady state. The initial period is longer as

the Rayleigh number is relatively small. The Nusselt

number at the final state is smaller than the value mea-

sured, since the open ended effect has been totally
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ignored and the main stream is assumed as fully devel-

oped. However, as shown in Table 1, the Nusselt num-

ber has excellent agreement with the measured values for
Benard thermal convection in a horizontal water layer

[35,42]. The maximum deviation is less than 5%. It is

seen that the Rayleigh number should be multiplied by a



Table 1

The overall Nusselt number on the bottom wall for the cases given in Fig. 4

Ra sin h=104 0.707 3.536 14.14 42.43 70.71

Nuav experiment [35,42] 2.28 3.03 4.65 6.53 7.53

Nuav present calulation 2.20 3.05 4.80 6.20 7.25
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factor sin h. For the natural convection at the Ra range

considered, the overall heat flux of the secondary flow

for NCIC problem can be predicted by solving the Na-

vier–Stokes equations.

4.3. Effect of the inclination

The numerical results have revealed that the sec-

ondary flow appears to have different patterns when the

inclination of the channel varies from 15� to 45�. As

shown in Fig. 5(a), for Ra ¼ 104, when the inclination is

15�, the secondary flow is rather weak, because the

stream function

w�ð¼ w
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra=Pr

p
; ow=oy ¼ u; ow=ox ¼ �vÞ

takes a small value, which is of the order 10�6. However,

for the case of larger inclination, Fig. 5(b) and (c) show

that the value of w� has an order of unity for the par-

ticular Rayleigh number. The inclination can also im-

pact the number of cell in the secondary flow section.

The evaluated cell number and its relation to the Ra and

inclination have been given in Table 2.

To validate the cell number shown in Table 2, Figs. 6

and 7 show the secondary flow patterns for another

spacing width ratio S=W ¼ 0:5 with two Ra values

(Ra ¼ 2:5� 104, 1.495 · 105). It is noted that for small

Rayleigh number, the inclination does not affect the

uniformity of the cellular distribution in the flow section.
0 1 2 3 4 5
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Fig. 5. The secondary flow patterns at t ¼ 200 for Ra ¼ 104 and S=W
Note that these streamlines in (a), (b) and (c) are respectively lab

+1.0· 10�6 with an increment 2.0 · 10�6; w� ¼ �0:75, via 0 to +0.75

increment 0.2.
However, for larger Ra value such as Ra ¼ 1:495� 105,

the inclination does cause the distribution uniformity of

cells, but the cell number becomes less.

4.4. Effect of Rayleigh number

The Rayleigh number as an indication of heating rate

should have a dominant effect on the secondary flow of

NCIC as shown in Table 2. The extensive numerical

experiments have confirmed the fact. However, the effect

of Rayleigh number can be alleviated by decreasing the

inclination of the channel for small Rayleigh numbers.

When the Rayleigh number is beyond the threshold of

the transition to chaos, which is about 105, the inclina-

tion effect nearly disappeared. Fig. 8 shows the stream-

lines corresponding to three Ra values as the ratio S=W
is set as 0.0667, from which one also can see that the cell

number given in Table 2 coincides with the evaluated

pattern of the secondary flow of NCIC.

4.5. Effect of ratio S=W

The side walls effect is equivalent to the effect of the

ratio S=W . Numerical results were evaluated by fixing

the spacing and allowing the width to be changed. This,

however, is different from the way used in laboratory,

where the width is fixed and spacing of the channel can

be adjusted to a required scale. It is convenient to assign
0
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¼ 0:1 with (a) for h ¼ 15�, (b) for h ¼ 30�, and (c) for h ¼ 45�.
eled by values of w�ð¼ w�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra=Pr

p
Þ ¼ �1:0� 10�6, via 0 to

with an increment 1.5; and w� ¼ �1:0, via 0 to +1.0 with an



Table 2

The cell numbers in the super-critical secondary flow for different inclinations and Rayleigh numbers

Ra=104 S=W ¼ 0:1 S=W ¼ 0:0667 S=W ¼ 0:05

h ¼ 15� h ¼ 30� h ¼ 45� h ¼ 15� h ¼ 30� h ¼ 45� h ¼ 15� h ¼ 30� h ¼ 45�

1 10 14 13 15 20 18 19 24 23

2.5 13 13 15 20 23 22 26 27 29

5.0 15 18 19 20 22 21 28 30 33

14.95 17 14 12 24 18 15 44 29 24

20.0 17 11 10 20 16 16 38 29 19

40.0 11 12 10 15 16 14 26 20 19

60.0 11 9 10 19 15 14 24 18 19

80.0 13 10 10 16 14 14 20 17 18

100.0 12 9 10 15 16 14 20 17 19
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Fig. 6. The secondary flow patterns at t ¼ 200 for Ra ¼ 2:5� 104 and S=W ¼ 0:05 with (a) for h ¼ 15�, (b) for h ¼ 30�, and (c) for

h ¼ 45�. Note that these streamlines in (a), (b), and (c) are labeled by values of w� ¼ �1:0, via 0 to +1.0 with an increment 0.2.
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Fig. 7. The secondary flow patterns of NCIC at t ¼ 200 for Ra ¼ 14:95� 104 and S=W ¼ 0:05 with (a) for h ¼ 15�, (b) for h ¼ 30�, and
(c) for h ¼ 45�. Note that these streamlines in parts (a), (b), and (c) are labeled by values of w� ¼ �2:5, via 0 to +2.5 with an increment

0.5.
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the value of Rayleigh numbers in this way. Regardless of

the scale choice and Ra values, the cell number becomes

more when the ratio S=W is decreased. For instance, for

Ra ¼ 104, from the third row in Table 2, the cell number

has changed from 14, via 20 to 24 for h ¼ 30�, as the

ratio S=W is varied from 0.1, via 0.667 to 0.05. From the

remained rows in Table, this variation trend is the same.

4.6. Comparisons of spatial wavelength between simula-

tion and test results

Fig. 9 shows the comparison of the numerical results

with experimental data abstracted from Ref. [28], for the

special inclination h ¼ 45�. In Ref. [28], Azevedo and
R
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Fig. 9. Comparison of the spatial wavelength between numerical
Sparrow have shown their correlation for the spatial

wavelength as Lx=S ¼ 26:2Ra�0:3. In general, the pre-

dicted wave length is larger than the measured data. The

predicted results are in good agreement with the exper-

imental results for smaller Rayleigh numbers (Ra < 105).

For Rayleigh number over the second threshold of flow

instability, i.e. the transition to chaos, larger discrep-

ancies are found. The deviation may be caused by the

channel’s open end influence, which was not considered

in the numerical simulations. The results shown in Table

1 have revealed that the overall Nusselt numbers from

calculation agree with the early measurements [35,42]

quite well. It seems difficult to say that the calculation

may be unrealitic for those cases with larger Ra (>105).
a
105 106

o & Sparrow

o & Sparrow

& Sparrow

simulation and experimental results for the case h ¼ 45 �C.
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In addition, the numerical viscous effect becomes

apparant for the case of large Rayleigh numbers. The

deviation means that the feasibility of using finite dif-

ference approximation in these cases is doubtful. Even

though the ratio of spacing to width has impacted the

cellular number, the wave length of the cells for the

secondary flow, as shown in Fig. 9, is almost indepen-

dent of the ratio.
5. Conclusions

The super-critical properties of secondary flow of

natural convection in inclined channels (NCIC) have

been explored numerically with PmIII algorithm, in

which, the inclination and the side wall effects have been

emphasized. The results show that the secondary flow

patterns is dominated by Rayleigh number when the

Prandtl number is fixed for water flow, but the inclina-

tion of the inclined channel has significant influence on

the cellular number appeared in the secondary flow.

Decreasing the ratio of spacing to width increases the

cell number. However, as indicated in the experimental

results, the spatial wave length in the secondary flow is

almost independent of the ratio. For relatively small

Rayleigh number, the predicted results are well com-

pared with the measured data, implying the numerical

method is applicable to capture the properties of the

secondary flows of NCIC for moderate Rayleigh num-

bers. However, for larger Rayleigh numbers, the sec-

ondary flow for NCIC appears to have less cells than

observed. This may be caused by neglecting the channel’s

open end effect. It should be noted that for this case, the

feasibility of the finite difference approximation is ques-

tionable due to the presence of apparent viscous effect.
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